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To discuss the difference between stereogenicity and chirality, we propose the con-
cept of RS-stereoisomeric groups. Beginning with this concept, we have further pro-
posed the concepts of holantimers, stereoisograms, and RS-stereogenicity. Thereby, we
have clarified that the concept of RS-stereogenicity, but not conventional stereogenicity,
is closely related to chirality. Thus, five RS-stereogenicity types are defined and exam-
ined to discuss the difference between stereogenicity and chirality. Combinatorial enu-
merations have also been studied by considering the RS-stereogenicity.
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1. Introduction

The concept of stereogenicity has been frequently confused with the
concept of chirality. For example, the CIP (Cahn–Ingold–Prelog) system of ste-
reochemical nomenclature (the RS-nomenclature) has originally proposed to
specify the chirality of molecules, but later revised to specify the stereogenici-
ty [1,2]. Although there appeared a convincing discussion so as to differentiate
the stereogenicity from the chirality [3], the difference has not been fully demon-
strated even in standard textbooks on stereochemistry [4,5].

Chirality and prochirality have been discussed both theoretically [6] and
intuitively [7] so that various concepts obtained by these discussions have been
applied to isomer enumerations and classification of symmetries [8]. Recently,
we have discussed chirality and stereogenicity in terms of observance/violation
of chirality fittingness [9] and in terms of stereoisomeric groups [10]. Although
these approaches have revealed several points concerned with the difference
between stereogenicity and chirality, a more detailed investigation was felt desir-
able with respect to a common and integrated standpoint that would enable us
to discuss both stereogenicity and chirality.

265

0259-9791/04/0300-0265/0 © 2004 Plenum Publishing Corporation



266 S. Fujita / Integrated discussion on stereogenicity and chirality

1 2

Figure 1. Numbered tetrahedral skeleton and a funtion generating a molecule of A2B2.

In this article, we propose the concept of RS-stereoisomeric groups, which
is a subconcept of the stereoisomeric groups proposed in the previous report
[10]. The concept of RS-stereoisomeric groups generates the concepts of holanti-
mers and stereoisograms. Thereby, the concept of RS-stereogenicity is extracted
and distinguishied from conventional stereogenicity, where it is shown to play an
important role to discuss its relevance to chirality.

2. RS-Stereoisomeric groups

2.1. Definitions

The four positions of a teterahedral skeleton of Td-symmetry are numbered
sequentially, as shown in figure 1(left). Throughout the present article, the num-
bering shown as 1 is selected as a reference, although any numbering can be
selected as a reference. The symmetry of the reference skeleton is first taken into
consideration.

The symmetry of the four positions is ascribed to the coset representation
Td(/C3v) (figure 2) [6,8].

GY = GC + σd(1)GC

= Td(/C3v) = {I, C2(1), . . . ; σd(1), S4(3), . . . }, (1)

where each permutation of GY (= Td(/C3v)) is equalized to the correspond-
ing symmetry operation for the sake of simplicity (i.e., σd(1) = (1)(2 3)(4), etc.)
and the core portion of the twelve proper rotations is placed to be GC =
{I, C2(1), . . . , C2

3(2)}. On the other hand, the four positions can be permuted by
the permutations belonging to the symmetric group of degree four (S[4]).

GX = S[4] = GC + σ̃d(1)GC

= {I, C2(1), . . . ; σ̃d(1), S̃4(3), . . . }, (2)

where each symbol with a wide tilde (e.g., σ̃d(1) or S̃4(3)) represents the same per-
mutation as the corresponding symbol without a wide tilde (e.g., σd(1) and S4(3))
but is not accompanied by the inversion of the ligand chirality.
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Figure 2. Td(/C3v) and S[4].

Although the tetrahedral skeleton is dually subject to these two groups (i.e.,
the point group Td and the symmetric group S[4]), the actions of the two groups
are different especially when the positions are occupied by chiral ligands. We
have recently revealed that the dual actions can be integrated by considering a
stereoisomeric group (G = Td(/C3v)-S[4]) shown in figure 2 [10], where the left
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column contains the permutations of the coset representations Td(/C3v) (sur-
rounded by a vertical box), the upper row contains the permutations of the sym-
metric group S[4] (surrounded by a horizontal box), and the permutations of the
coset representation corresponding to the proper rotations are contained as a
common part (GC = T or S[4]

10). The newly appearing part (the bottom-right
section of figure 2) comprises the same permutations of the common part (the
upper-right section of figure 2) that are characterized by the opposite chiralities.
Each symbol of this section (e.g., Ĩ or C̃2(1)) represents the same permutation as
the common part (e.g., I or C2(1) in T or S[4]

10) but is accompanied by the inver-
sion of the ligand chirality. Note that each number with an overbar represents
the conversion of a chiral ligand into the corresponding chiral ligand with the
opposite handedness.

In this paper, the stereoisomeric group referred to as G = Td(/C3v)-S[4]

(figure 2) is more specifically called an RS-stereoisomeric group, since the ste-
reoisomeric groups defined in the previous paper [10] should be differentiated
from the present RS-stereoisomeric groups. The prefix RS stems from the fact
that the RS-stereoisomeric group is concerned with right- and left-handedness
and is related to the RS-nomenclature [1,2]. Note the tetrahedral skeleton (G =
Td(/C3v)-S[4]) is a special case in which the RS-stereoisomeric group is identical
with the stereoisomeric group.

Let us consider a permutation σ̃d(1) = (1)(2 3)(4) by stating from σd(1) =
(1)(2 3)(4). Then, the RS-stereoisomeric group (G) is represented as follows:

G = GY + σ̃d(1)GY . (3)

The RS-stereoisomeric group G of this case contains normal subgroups rep-
resented by GY (equation 1) and GX (equation 2). Moreover, the G contains
another normal subgroup represented by

GZ = GC + ĨGC

= {I, C2(1), . . . ; Ĩ , C̃2(1), . . . }, (4)

where we place Ĩ = (1)(2)(3)(4). In the present article, the group GX is called
an RS-permutation group. The RS is attached to differentiate it from usual per-
mutation groups. The group GY is simply called a point group, although it is a
permutation group (more precisely speaking, a coset representation) to specify
discrete objects with handedness of ligands. Note that the term “point groups”
is also used to refer to those for continuous objects. The group GZ is called an
inversion group.

In the light of the discussions above, an RS-stereoisomeric group can be
defined generally by starting a coset representation (GY ) of a point group, where
GY comprises a maximum chiral part GC and the permutations of the remaining
improper rotations. When the coset representation is of degree n, a representative
of the improper rotations corresponds to a permutation of degree n (σ ). Then we
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consider a permutation of degree n (σ̃ ) that is the same permutation as σ but is
not accompanied by the inversion of the ligand chirality. Thereby, we have an
RS-stereoisomeric group by the following equation:

G = GY + σ̃GY . (5)

The G contains the following normal subgroups:

GY = GC + σGC, (6)

GX = GC + σ̃GC, (7)

GZ = GC + ĨGC. (8)

Of course, GC is a normal subgroup of G. The following relationship is eas-
ily obtained:

G = GX + σGX. (9)

Four ligands selected from a set of achiral ligands {A, B, C, D} and chi-
ral ligands {p, p, q, q, r, q, s, s} are placed on the positions of the tetrahedral
skeleton to give a molecule. If the permutations belonging to GC are operated
on the molecule, there appear homomers of the original (reference) molecule. If
each permutation belonging to σGC (equation 6) is operated on the reference
molecule, there appears the enantiomer of the reference molecule. If each per-
mutation belonging to σ̃GC (equation 7) is operated on the reference molecule,
there appears the RS-diastereomers of the reference molecule. Each permutation
belonging to ĨGC (equation 8) generates another diastereomer of the reference
molecule, which is here called a holantimer. By the comparison between the per-
mutations of GC (e.g., those in figure 2) and those of ĨGC (e.g., those in figure
2), we can restate that two molecules (derivatives) based on the same skeleton
are defined as being holantimeric, if all of the ligands in the one molecule have
the opposite chiralities of the corresponding ligands in the other molecule. They
are called holantimers with each other.

2.2. Subgroups and derivatives of tetrahedral skeletons

2.2.1. Proper and improper permutations
The point subgroup GY shown in equation 6 is concerned with chi-

rality/achirality, where the operations contained in the coset GC have been
called proper rotations, while the ones contained in the coset σGC have been
called improper rotations. For example, the operations contained in the coset T
(⊂ Td) are proper rotations, while the operations contained in the coset σd(1)T
are improper rotations (figure 2). Thus, enantiomeric relationships depend on
whether improper rotations are relevant or not.
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On the other hand, the RS-permutation subgroup GX shown in equation 7
is concerned with stereogenicity/astereogenicity (more precisely RS-stereogenicity/
RS-astereogenicity). Parallel to the chirality case, the permutations contained in
the coset GC are here called proper permutations and the ones in the coset σ̃GC

are called improper permutations. For example, the operations contained in the

coset T̃ (=S[4]
10) are proper permutations, while the operations contained in the

coset σ̃d(1)T̃ (=(1)(2 3)(4)S[4]
10) are improper permutations (figure 2). By this defi-

nition, diastereomeric relationships (more precisely RS-diastereomeric relation-
ships) depend on whether improper permutations are relevant or not.

Further, the inversion subgroup GZ shown in equation 8 is concerned with
the inversion of ligands where the operations contained in the coset GC are
here called proper coincidence and the ones in the coset ĨGC are called improper
coincidence (or inversion). For example, the operations contained in the coset T

(=S[4]
10) are proper coincidences, while the operations contained in the coset Ĩ T̃

(=(1)(2)(3)(4)S[4]
10) are improper coincidences (figure 2). By this definition, holan-

timeric relationships depend on whether improper coincidences are relevant or
not.

2.2.2. Stereogenic and astereogenic subgroups
As discussed in the preceding paragraphs, the subgroup GY (e.g., Td in

equation 6) is concerned with chirality and specifies enantiomeric relationships.
On the other hand, the subgroup GX (e.g., S[4] in equation 6) is concerned with
RS-stereogenicity and specifies RS-diastereomeric relationships.

The two subgroups GY and GX are isomorphic to each other in the light of
their constructions (cf. figure 2). For example, let us consider Td (equalized to
Td(/C3v)) as the subgroup GY . The Td has a non-redundant set of subgroups:

SSGTd
= {Td, T, D2d, C3v, C2v, D, S4, C3, Cs, C2, C1}, (10)

where an appropriate representative is selected from each set of conjugate sub-
groups [11].

Among these subgroups, T, D, C3, C2, and C1 are chiral subgroups, because
they involve proper rotations only. On the other hand, the remaining subgroups,
i.e., Td , D2d , C3v, C2v, S4, and Cs , are achiral subgroups, because they involve
proper and improper rotations.

According to the isomorphism, the symmetric group S[4] as an RS-permu-
tation (GX) has the non-redundant set of subgroups corresponding to the SSGTd

(equation 10), as listed in table 1. To emphasize the correspondence between the
point group Td and the symmetric group S[4] (=T̃d), each subgroup of S[4] is rep-
resented by the symbol for the isomorphic subgroup of Td , which is differenti-
ated with a tilde. Note that table 1 becomes identical with the table for the point
group Td [11] by removing each tilde.
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Table 1
RS-permutation subgroups of T̃d

Subgroups of The present Subgroups of
T̃d Permutations notation S[4]

T̃d {I, C2(1), · · · ; σ̃d(1), S̃4(3), · · · } GY S[4] (= S[4]
11)

T̃ {I, C2(1), · · · } GC S[4]
10

D̃2d {I, C2(1), C2(2), C2(3); σ̃d(1), S̃4(3), S̃
3
4(3), σ̃d(6)} S[4]

9

C̃3v {I, C3(1), C
2
3(1); σ̃d(1), σ̃d(2), σ̃d(3)} S[4]

8

C̃2v {I, C2(3); σ̃d(1), σ̃d(6)} S[4]
7

D̃ {I, C2(1), C2(2), C2(3)} S[4]
6

S̃4 {I, C2(1); S̃4(1), S̃
3
4(1)} S[4]

5

C̃3 {I, C3(1), C
2
3(1)} S[4]

4

C̃s {I, σ̃d(1)} S[4]
3

C̃2 {I, C2(1)} S[4]
2

C̃1 {I } S[4]
1

Since T is the common part (GC) of Td and T̃d (= S[4]), it contains common
subgroups as follows: T = T̃, D = D̃, C3 = C̃3, C2 = C̃2, and C1 = C̃1.

Parallel to the classification of chiral/achiral subgroups, the subgroups listed
in table 1 can be classified into stereogenic/astereogenic subgroups (precisely
speaking RS-stereogenic/RS-astereogenic subgroups). Thus, the subgroups T̃(=
T), D̃(= D), C̃3(= C3), C̃2(= C2), and C̃1(C1) are RS-stereogenic subgroups,
because they involve proper permutations only. On the other hand, the remain-
ing subgroups, i.e., T̃d , D̃2d , C̃3v, C̃2v, S̃4, and C̃s , are astereogenic subgroups,
because they involve proper and improper permutations. Obviously, we can state
the following proposition: If a molecule belongs to an RS-stereogenic (sub)group,
it is concluded to be specified by the RS-nomenclature. Otherwise, it is not to be
specified by the RS-nomenclature.

2.2.3. Derivation by Placing Ligands
A molecule based on the teterahedral skeleton can be generated by plac-

ing an appropriate set of ligands on the positions of the tetrahedral skeleton.
The generation process is formulated to be a function in which each f (i) (i =
1, 2, 3, 4) is equal to a ligand, as shown in figure 1 (right). For example, let us
consider a function that each of the positions 1 and 4 is occupied by an achi-
ral ligand A (i.e., f (1) = A and f (4) = A) and each of the positions 2 and 3
by an achiral ligand B (i.e., f (2) = B and f (3) = B). Then, we can obtain the
molecule 2 with the formula A2B2.

When the permutations belonging to the RS-stereoisomeric group G (=Td

(/C3v)-S[4] shown in figure 2) act on the molecule, they produce stereoisomers
shown in figure 3. From another point of view, this derivation can be interpreted
as an operation in which the same function is applied to all of the numbered
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2a

2b 3b 4b 5b

3a 4a 5a

Figure 3. Isomer equivalence of A2B2 under the RS-stereoisomeric group (Td(/C3v)-S[4]).

skeletons generated by the action of the RS-stereoisomeric group (G = Td(/C3v)-
S[4]). By the inspection of these stereoisomers, the following results are obtained:

1. Among the homomers that are generated by the operations of the com-
mon part (GC = T or S[4]

10), the molecules 2a and 3a are identical with
the reference molecule 2a. In other words, the corresponding operations
I (=(1)(2)(3)(4)) and C2(3) (=(1 4)(2 3)) fix the reference molecule 2a
invariant. The remaining operations of GC convert 2a into its homomers,
although these are not depicted in figure 3.

2. The operations σ̃d(1) (= (1)(2 3)(4)) and σ̃d(6) (= (1 4)(2)(3)) contained
in the upper-right part (σ̃d(1)GC = (1)(2 3)(4)S[4]

10) fix the reference mol-
ecule 2a invariant so as to give 4a and 5a. The remaining operations of
σ̃d(1)GC convert 2a into its homomers (not depicted).

3. The operations σd(1) (= (1)(2 3)(4)) and σd(6) (= (1 4)(2)(3)) contained
in the bottom-left part (σd(1)GC = Tσd(1)) fix the reference molecule 2a
invariant, giving 2b and 3b. The remaining operations of σd(1)GC convert
2a into its homomers (not depicted).

4. The operations Ĩ (= (1)(2)(3)(4)) and C̃2(3) (= (1 4)(2 3)) contained in
the remaining part fix the reference molecule 2a invariant so as to give
4b and 5b. The remaining operations of ĨGC convert 2a into its homo-
mers (not depicted).
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Hence, the reference molecule 2a is fixed invariant by the operations con-
tained in the group:

G′ = {I, C2(3); σd(1), σd(6); σ̃d(1), σ̃d(6); Ĩ , C̃2(3)}, (11)

which is a subgroup of G (= Td(/C3v)-S[4] shown in figure 2).
From the viewpoint of chirality, the molecule 2a is concluded to belong to

the group C2v (= {I, C2(3); σd(1), σd(6)}), which is a subgroup of G′ (equation 11).
Note that the group C2v is a subgroup of the point group Td (= GY ), which
is equalized to the permutation representation Td(/C3v) in this paper (figure 2).
Since the group C2v is an achiral subgroup, the molecule 2a is concluded to be
achiral.

From the viewpoint of stereogenicity (precisely RS-stereogenicity), on the
other hand, the molecule 2a is concluded to belong to C̃2v (= {I, C2(3); σ̃d(1), σ̃d(6)}
= S[4]

7 ), which is another subgroup of G′ (equation 11). Since the group C̃2v is an
RS-astereogenic subgroup of the RS-permutation group T̃d (= GX), the molecule
2a is concluded to be RS-astereogenic. This means that the molecule 2a is not
characterized by the RS-nomenclature.

2.3. Stereoisograms

By combining the chirality/achirality and the RS-stereogenicity/RS-astere-
ogenicity, there emerge five types of stereoisomers to discuss stereochemistry and
stereoisomerism.

2.3.1. Stereoisograms of Type I
Let us place four ligands selected from a set of achiral ligands {A, B, C, D}

on the positions of the tetrahedral skeleton belonging to the RS-stereoisomeric
group G (= Td(/C3v)-S[4]). Then we have a molecule that belongs to a subgroup
of G. For example, let us consider a function to give the molecule 6a shown in
figure 4, where position 1 is occupied by an achiral ligand A (i.e., f (1) = A),
position 2 by an achiral ligand B (i.e., f (2) = B), position 3 by an achiral lig-
and C (i.e., f (3) = C), and position 4 by an achiral ligand D (i.e., f (4) = D).
The same function is applied to all of the numbered skeletons generated by the
action of the RS-stereoisomeric group (G = Td(/C3v)-S[4]). Thereby, the mole-
cules can be generated, as shown in figure 4. The operations of the common part
(GC = T or S[4]

10) generate the homomers of the reference molecule (6a), e.g., 7a
and 8a. The operations of the upper-right part (σ̃d(1)GC = (1)(2 3)(4)S[4]

10) gener-
ate the diastereomers of 6a, e.g., 9a, 10a, and 11a. The operations of the bot-
tom-left part (σd(1)GC = Tσd(1)) generate the enantiomers of 6a, e.g., 6b, 7b, and
8b. The operations of the remaining part generate another set of diastereomers
of 6a, e.g., 9b, 10b, and 11b, which represent the holantimer of 6a according to
the definition described above.
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Figure 4. Isomer equivalence of ABCD under the RS-stereoisomeric group (Td(/C3v)-S[4]).

Figure 5. Stereoisogram (Type I) for tetrahedral molecules with ABCD.

The reference molecule (6a) and its homomers (7a, 8a, etc.) are identical
with the holantimer (9b) and its homomers (10b, 11b, etc.). The enantiomer (6b)
and its homomers (7b, 8b, etc.) are identical with the RS-diastereomer (9a) and
its homomers (10a, 11a, etc.).

Among the permutations of figure 4, only I and Ĩ fix the reference mole-
cule (cf. 6a and 9b), where we place I = (1)(2)(3)(4) and Ĩ = (1)(2)(3)(4). It
follows that the molecule 6a belongs to the group {I, Ĩ }, which is a subgroup of
GZ (⊂ G).

From the viewpoint of chirality, 6a belongs to C1(= {I }), which is a sub-
group of T (i.e., a chiral subgroup of the point group Td). It follows that 6a is
concluded to be chiral. From the viewpoint of RS-stereogenicity, on the other
hand, 6a belongs to C1(= {I }), which is a subgroup of T̃ (i.e., a stereogenic sub-
group of the RS-permutation group T̃d). It follows that 6a is concluded to be
stereogenic.

By the inspection of figure 4, we can select the four molecules surrounded
by bold-line boxes as representatives for the distinct relationships described
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above, i.e., 6a for the reference molecule, 9a for the RS-diastereomeric relation-
ship, 6b for the enatiomeric relationship, and 9b for the holantimeric relation-
ship.

To discuss the relationship between chirality and stereogenicity, we define a
stereoisogram on the basis of the selected four molecules, as exemplified in figure
5. First, the holantimers (6a and 9b) located on the diagonal places are linked
with a diagonal equality symbol, as shown in figure 5. The relationship between
the two molecules in each column (the pair of 6a/6b; or the pair of 9a/9b) is
enantiomeric. Thereby, the vertical axis (C-axis) is related to chirality, as desig-
nated by the symbol C.

On the other hand, the relationship between the two compounds in each
row (the pair of 6a/9a or the pair of 6b/9b) is RS-diastereomeric. As a result,
the horizontal axis (S-axis) is found to be related to stereogenicity, as designated
by the symbol S.

The term “RS-diastereomeric” is used to specify the horizontal diastereo-
meric relationship appearing in each stereoisogram, because the relationship is
concerned with the RS-nomenclature and because there exist other types of dia-
stereomeric relationships. As a result, the present stereogenicity should be called
RS-stereogenicity.

The stereoisogram of Type I (e.g., figure 5) corresponds to a chiral and
RS-stereogenic case. It should be recalled that the molecule 6a belongs to the
group {I, Ĩ }, which is a subgroup of GZ (⊂ G). The group GZ is closely related
to the chiral and RS-stereogenic nature.

2.3.2. Stereoisograms of Type II
Let us next consider a function to give the molecule 12a shown in figure 6,

where the position 1 is occupied by an achiral ligand A (i.e., f (1) = A), each
of the positions 2 and 3 is occupied by a chiral ligand p (i.e., f (2) = p and
f (3) = p), and position 4 is occupied by an achiral ligand B (i.e., f (4) = B). The
same function is applied to all of the numbered skeletons generated by the action
of the RS-stereoisomeric group (Td(/C3v)-S[4]). Thereby, we obtain the molecules
shown in figure 6.

The reference molecule (12a) and its homomers (13a, 14a, etc.) are identi-
cal with the RS-diastereomer (15a) and its homomers (16a, 17a, etc.). The enan-
tiomer (12b) and its homomers (13b, 14b, etc.) are identical with the holantimer
(15b) and its homomers (16b, 17b, etc.).

Among the permutations of figure 6, only I and σ̃d(1) fix the reference mol-
ecule (cf. 12a and 15a), where we place I = (1)(2)(3)(4) and σ̃d(1) = (1)(2 3)(4).
It follows that the molecule 12a belongs to the group {I, σ̃d(1)}, which is a sub-
group of GX (⊂ G).

From the viewpoint of chirality, 12a belongs to C1(= {I }), which is a
subgroup of T (i.e., a chiral subgroup of the point group Td). It follows that
12a is concluded to be chiral. From the viewpoint of RS-stereogenicity, on the
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Figure 6. Isomer equivalence of ABp2 (ABp2) under the RS-stereoisomeric group (Td(/C3v)-S[4]).

other hand, 12a belongs to C̃s(= {I, σ̃d(1)}), which is an RS-astereogenic sub-
group of the RS-permutation group T̃d . It follows that 12a is concluded to be
RS-astereogenic.

When we select the four molecules surrounded by bold-line boxes shown in
figure 6, we can construct a stereoisogram of Type II (figure 7), where the four
molecules act as representatives for the distinct relationships described above,
i.e., 12a for the reference molecule, 15a for the RS-diastereomeric relationship,
12b for the enatiomeric relationship, and 15b for the holantimeric relationship.

The stereoisogram of Type II (e.g., figure 7) corresponds to a chiral and
RS-astereogenic case. It should be recalled that the molecule 12a belongs to the
group {I, σ̃d(1)}, which is a subgroup of GX (⊂ G). The group GX is closely
related to the chiral and RS-astereogenic nature.

Figure 7. Stereoisogram (Type II) for tetrahedral molecules with ABp2 (ABp2).
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Figure 8. Isomer equivalence of ABCp (ABCp) under the RS-stereoisomeric group (Td(/C3v)-S[4]).

2.3.3. Stereoisograms of Type III
When we consider a function in which position 1 is occupied by an achi-

ral ligand A (i.e., f (1) = A), position 2 by an achiral ligand B (i.e., f (2) = B),
position 3 by an achiral ligand C (i.e., f (3) = C), and position 4 by a chiral
ligand p (i.e., f (4) = p), we obtain the molecule 18a shown in figure 8. The
same function is applied to all of the numbered skeletons generated by the action
of the RS-stereoisomeric group (Td(/C3v)-S[4]). Thereby, we obtain the molecules
shown in figure 8.

The reference molecule (18a) and its homomers (19a, 20a, etc.); the
RS-diastereomer (21a) and its homomers (22a, 23a, etc.); the enantiomer (18b)
and its homomers (19b, 20b, etc.); and the holantimer (21b) and its homomers
(22b, 23b, etc.) construct distinct sets of stereoisomers. As a result, only the iden-
tity operation I among the permutations of figure 8 fixes the reference molecule
(18a), where we place I = (1)(2)(3)(4). It follows that the molecule 18a belongs
to the identity group {I }, which is a subgroup of GC (⊂ G).

From the viewpoint of chirality, 18a belongs to C1(= {I }), which is a sub-
group of T(= GC) (i.e., a chiral subgroup of the point group Td(= GY )). It fol-
lows that 18a is concluded to be chiral. From the viewpoint of RS-stereogenicity,
on the other hand, 18a belongs to C̃1(= {I }), which is a subgroup of T̃(= GC)

(i.e., an RS-stereogenic subgroup of the RS-permutation group T̃d(= GX). It fol-
lows that 18a is concluded to be RS-stereogenic.

By selecting the four molecules surrounded by bold-line boxes shown in
figure 8, we can construct a stereoisogram of Type III (figure 9). The four mole-
cules are selected as representatives for the distinct relationships described above,
i.e., 18a for the reference molecule, 21a for the RS-diastereomeric relationship,
18b for the enantiomeric relationship, and 21b for the holantimeric relationship.
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Figure 9. Stereoisogram (Type III) for tetrahedral molecules with ABCp (ABCp).

The stereoisogram of Type III (e.g., figure 9) corresponds to another chiral
and RS-stereogenic case. It should be recalled that the molecule 18a belongs to
the identity group {I }, which is a subgroup of GC (⊂ G). The group GC is closely
related to the chiral and RS-stereogenic nature. This case is different from Type
I in that the holantimeric relationship does not coincide with the enantiomeric
relationship.

2.3.4. Stereoisograms of Type IV
Let us consider a function in which position 1 is occupied by an achiral lig-

and B (i.e., f (1) = B), each of the positions 2 and 3 is occupied by an achi-
ral ligand A (i.e., f (2) = A and f (3) = A), and position 4 is occupied by an
achiral ligand C (i.e., f (4) = C). Thereby, we obtain the molecule 24a shown
in figure 10. The same function is applied to all of the numbered skeletons gen-
erated by the action of the RS-stereoisomeric group (Td(/C3v)-S[4]). Thus we
obtain the molecules shown in figure 10.

Figure 10. Isomer equivalence of A2BC under the RS-stereoisomeric group (Td(/C3v)-S[4]).
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Figure 11. Stereoisogram (Type IV) for tetrahedral molecules with A2BC.

The reference molecule (24a) and its homomers (25a, 26a, etc.); the
RS-diastereomer (27a) and its homomers (28a, 29a, etc.); the enantiomer (24b)
and its homomers (25b, 26b, etc.); and the holantimer (27b) and its homo-
mers (28b, 29b, etc.) construct distinct sets of stereoisomers. All of them are
homomeric to each other. Among the permutations of figure 10, four permu-
tations, i.e., I (=(1)(2)(3)(4)), σd(1) (=(1)(2 3)(4)), σ̃d(1) (=(1)(2 3)(4)), and Ĩ

(=(1)(2)(3)(4)), fix the reference molecule (24a). It follows that the molecule 24a
belongs to the group {I, σd(1), σ̃d(1), Ĩ }, which is a subgroup of G.

From the viewpoint of chirality, 24a belongs to Cs(= {I, σd(1)}), which is
an achiral subgroup of the point group Td(= GY ). It follows that 24a is con-
cluded to be achiral. From the viewpoint of RS-stereogenicity, on the other
hand, 24a belongs to C̃s(= {I, σ̃d(1)}), which is an RS-astereogenic subgroup
of the RS-permutation group T̃d(GX). It follows that 24a is concluded to be
RS-astereogenic.

By selecting the four molecules surrounded by bold-line boxes shown in fig-
ure 10, we can construct a stereoisogram of Type IV (figure 11). The four mole-
cules are selected as representatives for the distinct relationships described above,
i.e., 24a for the reference molecule, 27a for the RS-diastereomeric relationship,
24b for the enantiomeric relationship, and 27b for the holantimeric relationship.
However, all of them are homomeric to each other.

The stereoisogram of Type IV (e.g., figure 11) corresponds to an achiral and
RS-astereogenic case. It should be recalled that the molecule 24a belongs to the
group {I, σd(1), σ̃d(1), Ĩ }, which is a subgroup of G. The group G is closely related
to the achiral and RS-astereogenic nature.

2.3.5. Stereoisograms of Type V
Let us consider a function in which position 1 is occupied by an achiral

ligand A (i.e., f (1) = A), position 2 by a chiral ligand p (i.e., f (2) = p),
position 3 by a ligand p̄ of the opposite chirality (i.e., f (3) = p̄), and posi-
tion 4 by an achiral ligand B (i.e., f (4) = B). Thereby, we obtain the mole-
cule 30a shown in figure 12. The same function is applied to all of the numbered
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Figure 12. Isomer equivalence of ABpp̄ under the RS-stereoisomeric group (Td(/C3v)-S[4]).

Figure 13. Stereoisogram (Type V) for tetrahedral molecules with ABpp.

skeletons generated by the action of the RS-stereoisomeric group (Td(/C3v)-S[4]).
Thus we obtain the molecules shown in figure 12.

The reference molecule (30a) and its homomers (31a, 32a, etc.) are identi-
cal with the enantiomer (30b) and its homomers (31b, 32b, etc.). This fact means
that 30a is achiral. The RS-diastereomer (27a) and its homomers (34a, 35a, etc.)
are identical with the holantimer (33b) and its homomers (34b, 35b, etc.). Among
the permutations of figure 12, two permutations, i.e., I (= (1)(2)(3)(4)) and σd(1)

(= (1)(2 3)(4)), fix the reference molecule (30a). It follows that the molecule 30a
belongs to the group {I, σd(1)}(= Cs), which is a subgroup of GY (⊂ G).

From the viewpoint of chirality, 30a is concluded to be achiral, since it
belongs to Cs , which is an achiral subgroup of the point group Td(= GY ).
From the viewpoint of RS-stereogenicity, on the other hand, 30a belongs to
C̃1(= {I }), which is a subgroup of T̃(= GC) (i.e., an RS-stereogenic subgroup
of the RS-permutation group T̃d(= GX)). It follows that 30a is concluded to be
RS-stereogenic.

By selecting the four molecules surrounded by bold-line boxes shown in
figure 12, we can construct a stereoisogram of Type V (figure 13). The four
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Figure 14. RS-stereogenicity types.

molecules are selected as representatives for the distinct relationships described
above, i.e., 30a for the reference molecule, 33a for the RS-diastereomeric rela-
tionship, 30b for the enantiomeric relationship, and 33b for the holantimeric
relationship. However, the enantiomers are identical with the reference molecule,
which is achiral.

The stereoisogram of Type V (e.g., figure 13) corresponds to an achiral and
RS-stereogenic case. It should be recalled that the molecule 30a belongs to the
group {I, σd(1)}, which is a subgroup of GY (⊂G). The group GY is closely related
to the achiral and RS-stereogenic nature. This case has long been referred to as
pseudo-asymmetry.

2.3.6. RS-Stereogenicity types
As discussed in the preceding paragraphs (cf. figures 5, 7, 9, 11, and

13), there are five types that specify stereogenicity/astereogenicity along with
chirality/achirality. These types are here called RS-stereogenicity types, as listed
in figure 14. It should be emphasized that these five types are effective
to classify molecules based on other skeletons because of the definition of
RS-setereoisomeric groups.

2.4. Classification of tetrahedral molecules

Tetrahedral molecules have been combinatorial enumerated and listed as a
table [8,12]. They can be classified into the five RS-stereogenicity types defined
in the present article (figure 14). Thus, the RS-stereogenicity types of tetrahe-
dral molecules are collected in figure 15 in addition to their point groups and
their RS-permutation groups (table 1). Note that an appropriate enantiomer is
depicted for each enantiomeric pair of chiral molecules (Types I, II, and III).

Types I, III, and V are concerned with RS-stereogenic molecules (figure
15). Each of these molecules belongs to an RS-stereogenic group, which is a
subgroup of T̃(= GC ⊂ GX). In other words, it is characterized by horizontal
double-headed arrows appearing in its stereoisogram (e.g., figures 5, 9, or 13).
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Figure 15. RS-stereogenicity types (Types I to V) for tetrahedral molecules. The symbols A, B, C,
and D represent atoms or achiral ligands. The symbols p, q, r, and s represent chiral ligands, while
each symbol with an overbar represent the corresponding chiral ligand with the opposite chirality.

Thereby, it is specified in terms of the RS-nomenclature whether it is chiral or
achiral.

Two RS-stereogenic molecules linked with a horizontal brace for Type
III are chiral RS-diastereomers, which are equalized in the corresponding
RS-permutation group (i.e., they are contained in one stereoisogram). Note
that each of the two RS-stereogenic molecules accompanies the corresponding
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enantiomer. Two RS-stereogenic molecules linked with a horizontal brace for
Type V are achiral RS-diastereomers, which are equalized in the corresponding
RS-permutation group (i.e., they are contained in one stereoisogram).

On the other hand, Type I does not contain such a pair as linked with a
horizontal brace so that it represents cases in which the enantiomeric relation-
ship is superposed onto the diastereomeric relationship.

By the formulation described above, the conventional confusion on chiral-
ity and streogenicity is clarified to stem from the mixing of Type I, Type III, and
Type V:

1. No differentiation between Type I (chiral) and Type III (chiral) has
caused a mixation of an enantiomeric relationship with a diastereomeric
relationship. The diastereomeric relationship for Type I (S-axis in a stere-
oisogram, e.g., figure 5) is superposed onto the enantiomeric relationship
(C-axis), whereas the diastereomeric relationship for Type III (S-axis in
a stereoisogram, e.g., figure 9) is not superposed onto the enantiomeric
relationship (C-axis). The latter indicates that the RS-nomenclature spec-
ifies the diastereomeric relationship concerned with the S-axis.

2. An unconvincing differentiation between Type I (chiral) and Type V
(achiral) has caused another mixation of an enantiomeric relationship
with a diastereomeric relationship. They should be differentiated in terms
of their S-axes (stereogenic/astereogenic) but by no means in terms of
their C-axes (chiral/achiral). Obviously, the RS-nomenclature specifies a
diastereomeric relationship for Type V, since this type does not accom-
pany an enantiomeric relationship. Hence, it is natural to say that the
RS-nomenclature for Type I is concerned with the diastereomeric rela-
tionship and only indirectly with the enantiomeric relationship.

3. Combinatorial enumerations on RS-permutation groups

3.1. Racemic pairs on the action of RS-permutation groups

In order to accomplish combinatorial enumerations, we could use the
RS-stereoisomeric group G if the subgroup lattice of G was available. However,
the construction of the subgroup lattice of G is usually difficult. Hence, an alter-
native method based on an appropriate subgroup of G is to be developed.

Fortunately, a chiral molecule can be paired with its enantiomeric molecule.
For example, figure 4 shows that 6a and 6b construct a pair of enantiomers, as
surrounded by a bold-line box Any combination of a molecule (any homomer)
and an enantiomer (any homomer) can be used as a reference racemic pair. We
call such a pair a racemic pair. The racemic pair is permuted pairwise on the
action of the RS-permutation group T̃d (= GX), as shown in figure 4. The same



284 S. Fujita / Integrated discussion on stereogenicity and chirality

situation holds true for the pair of 12a and 12b shown in figure 6 and for the
pair of 18a and 18b shown in figure 8.

As for an achiral molecule, the reference molecule is identical with its mir-
ror image. Hence, they are treated as a vertual racemic pair containing the two
homomers. For example, the pair of 24a and 24b in figure 10 and the pair of 30a
and 30b in figure 12 represent this situation.

By this formulation, we can accomplish enumerations of racemic pairs on
the basis of the RS-permutation group GX in place of the direct enumerations
based on the RS-stereoisomeric group G. The former enumerations based on GX

are capable of revealing most features of the latter enumerations based on the
RS-stereoisomeric group G.

In each enumeration based on GX, a molecule and its RS-diastereomer of
Type I, III, or V are counted to be one stereoisomer, where they belong to an
RS-stereogenic group that is a subgroup of GX. On the other hand, a molecule
of type II or IV is counted to be one stereoisomer on the action of GX, where
it belongs to an RS-astereogenic group that is a subgroup of GX.

3.2. Enumeration of tetrahedral molecules

Let us enumerate racemic pairs based on the RS-perumtation group T̃d (=
GX) as an example. This enumeration is mathematically equivalent to the enu-
meration of the violation case of chirality-fittingness that has been reported in
a previous article [9]. Thus, we here use the partial-cyle-index (PCI) method of
enumeration which we have proposed previously [8]. Thereby, we obtain the PCIs
as follows:

PCI(C̃1, sd) = 1
24s4

1 + 1
8s

2
2 − 1

4s2
1s2 + 1

3s1s3 + 1
4s4, (12)

PCI(C̃2, sd) = 0, (13)

PCI(C̃s, sd) = 1
2s2

1s2 − 1
2s2

2 − s1s3 + s4, (14)

PCI(C̃3, sd) = 0, (15)

PCI(S̃4, sd) = 0, (16)

PCI(D̃2, sd) = 0, (17)

PCI(C̃2v, sd) = 1
2s2

2 − 1
2s4, (18)

PCI(C̃3v, sd) = s1s3 − s4, (19)

PCI(D̃2d, sd) = 0, (20)

PCI(T̃, sd) = 0, (21)

PCI(T̃d, sd) = s4. (22)

Among these PCIs, we find several PCIs of zero value: PCI(C̃2, sd),
PCI(C̃3, sd), PCI(S̃4, sd), PCI(D̃2, sd), PCI(D̃2d, sd), and PCI(T̃, sd), which show
that there exist no racemic pairs of these permutation symmetries.
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Since four ligands selected from a set of achiral ligands {A, B, C, D} and
chiral ligands p, p̄, q, q̄, r, q̄, s, s̄ are placed on the positions of the tetrahedral
skeleton to give a molecule, we use the following ligand inventory for the enu-
meration of racemic pairs:

sd = Ad + Bd + Cd + Dd + pd + p̄d + qd + q̄d + rd + rd + sd + s̄d . (23)

The inventory represented by equation 23 is introduced to the PCIs (eqs. 12
to 22); then the resulting equations are expanded to give the generating functions
for the respective subgroups. For example, we obtain

fC̃s

= (A2BC + A2BD + · · · ) + (A2Bp + A2Bp̄ + · · · ) + (A2pp̄ + A2qq̄ + · · · )
+ (A2pq + A2p̄q̄ + · · · ) + (A2p2 + A2p̄2 + · · · ) + (Ap2p̄ + App̄2 + · · · )
+ (Ap2q + Ap̄2q̄ + · · · ) + (p2p̄q + pp̄2q̄ + · · · ) + (p2qr + p̄2q̄r + · · · ),

(24)

fC̃2v

= (A2B2 + A2C2 + · · · ) + (A2p2 + A2p̄2 + · · · )
+ (p2p̄2 + qq̄2 + · · · ) + (p2q2 + p̄2q̄2 + · · · ) (25)

In the present enumeration of racemic pairs, such a term as (A2Bp + A2Bp)
represents one racemic pair. We select either of them, e.g., A2Bp, as a represen-
tative for the sake of simplicity. These data (equations 24 and 25) are collected
in the C̃s- and the C̃2v-column The data for the remaining subgroups are also
collected in table 2.

Table 2 also involves RS-stereogenicity types described above (Types I to V)
in addition to point-group symmetries, which have been enumerated in previous
articles [9,12]. Note that Types I, II, and III are concerned with chiral molecules,
while Types IV and V are concerned with achiral molecules.

These molecules have been depicted in figure 15. Each pair of two mole-
cules (precisely RS-diastereomeric racemic pairs) linked with a horizontal brace
(Types III and V) is required to represent the one that should be counted as
one racemic pair, as exemplified by figure 8 for Type III and figure 12 for Type
IV. This requirement is confirmed by the data listed in the C̃1-column of table
2. The presence of such RS-diastereomers (precisely RS-diastereomeric racemic
pairs) are ascribed to the fact that the C̃1 is RS-stereogenic.

4. Conclusion

We have proposed the concept of RS-stereoisomeric groups in order to
discuss the difference between stereogenicity and chirality, where each RS-ste-
reoisomeric group comprises a coset representation of a point group as well
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Table 2
Number of racemic pairs derived from a tetrahederal skeleton.

Number of promolecules
RS-Stereo-

Proligand genicity C̃1 C̃2 C̃s C̃3 S̃4 D̃2 C̃2v C̃3v D̃2d T̃ T̃d Point
partition type S[4]

1 S[4]
2 S[4]

3 S[4]
4 S[4]

5 S[4]
6 S[4]

7 S[4]
8 S[4]

9 S[4]
10 S[4] group

ABCD I 1 0 0 0 0 0 0 0 0 0 0 C1

pp̄qq̄ I 1 0 0 0 0 0 0 0 0 0 0 C1

p4 II 0 0 0 0 0 0 0 0 0 0 1 T
A3p II 0 0 0 0 0 0 0 1 0 0 0 C3

Ap3 II 0 0 0 0 0 0 0 1 0 0 0 C3

p3q II 0 0 0 0 0 0 0 1 0 0 0 C3

p3p II 0 0 0 0 0 0 0 1 0 0 0 C3

A2p2 II 0 0 0 0 0 0 1 0 0 0 0 C2

p2q2 II 0 0 0 0 0 0 1 0 0 0 0 C2

A2Bp II 0 0 1 0 0 0 0 0 0 0 0 C1

A2pq II 0 0 1 0 0 0 0 0 0 0 0 C1

ABp2 II 0 0 1 0 0 0 0 0 0 0 0 C1

Ap2 p II 0 0 1 0 0 0 0 0 0 0 0 C1

Ap2q II 0 0 1 0 0 0 0 0 0 0 0 C1

p2p̄q II 0 0 1 0 0 0 0 0 0 0 0 C1

p2qq̄ II 0 0 1 0 0 0 0 0 0 0 0 C1

p2qr II 0 0 1 0 0 0 0 0 0 0 0 C1

ABCp III 1 0 0 0 0 0 0 0 0 0 0 C1

ABpq III 1 0 0 0 0 0 0 0 0 0 0 C1

App̄q III 1 0 0 0 0 0 0 0 0 0 0 C1

Apqr III 1 0 0 0 0 0 0 0 0 0 0 C1

pp̄qr III 1 0 0 0 0 0 0 0 0 0 0 C1

pqrs III 1 0 0 0 0 0 0 0 0 0 0 C1

A4 IV 0 0 0 0 0 0 0 0 0 0 1 Td

A3B IV 0 0 0 0 0 0 0 1 0 0 0 C3v

A2B2 IV 0 0 0 0 0 0 1 0 0 0 0 C2v

p2p2 IV 0 0 0 0 0 0 1 0 0 0 0 S4

A2BC IV 0 0 1 0 0 0 0 0 0 0 0 Cs

A2pp IV 0 0 1 0 0 0 0 0 0 0 0 Cs

ABpp V 1 0 0 0 0 0 0 0 0 0 0 Cs

as an RS-permutation group that is isomorphic to the point group. By start-
ing from the concept, we have further proposed the concepts of holantimers
and stereoisograms. Thereby, we have proposed the concept of RS-stereogenici-
ty, which is a more specific concept than the conventional stereogenicity. We have
clarified that RS-stereogenicity is closely related to chirality. Five RS-stereogenic-
ity types are defined and examined in detail to discuss the difference between
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stereogenicity and chirality. Combinatorial enumerations on the action of an
RS-permutation group have been also studied by considering RS-stereogenicity.
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